翻訳と辞書
Words near each other
・ Kissing booth
・ Kissing bough
・ Kissing Case
・ Kissing contusion
・ Kissing Cousin (horse)
・ Kissing Cousins
・ Kissing Cousins (film)
・ Kissing Cup
・ Kissing Cup's Race
・ Kissing Cup's Race (1920 film)
・ Kissing Darkness
・ Kissing gate
・ Kissing gourami
・ Kissing hands
・ Kissing Jessica Stein
Kissing number problem
・ Kissing on the Mouth
・ Kissing Point ferry wharf
・ Kissing Point, New South Wales
・ Kissing Rain
・ Kissing Shakespeare
・ Kissing stem-loop
・ Kissing Suzy Kolber
・ Kissing the Beehive
・ Kissing the cod
・ Kissing the Future of Love
・ Kissing the Gunner's Daughter
・ Kissing the Pink
・ Kissing the shuttle
・ Kissing the Sun


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kissing number problem : ウィキペディア英語版
Kissing number problem
In geometry, a kissing number is defined as the number of non-overlapping unit spheres that can be arranged such that they each touch another given unit sphere. For a lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another. Other names for kissing number that have been used are Newton number (after the originator of the problem), and contact number.
In general, the kissing number problem seeks the maximum possible kissing number for ''n''-dimensional spheres in (''n'' + 1)-dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three-dimensional space.
Finding the kissing number when centers of spheres are confined to a line (the one-dimensional case) or a plane (two-dimensional case) is trivial. Proving a solution to the three-dimensional case, despite being easy to conceptualise and model in the physical world, eluded mathematicians until the mid-20th century.〔〔 Solutions in higher dimensions are considerably more challenging, and only a handful of cases have been solved exactly. For others investigations have determined upper and lower bounds, but not exact solutions.〔
==Known greatest kissing numbers==

In one dimension, the kissing number is 2:
:
In two dimensions, the kissing number is 6:
:
Proof: Consider a circle with center ''C'' that is touched by circles with centers ''C1'', ''C2'', .... Consider the rays ''C Ci''. These rays all emanate from the same center ''C'', so the sum of angles between adjacent rays is 360°.
Assume by contradiction that there are more than 6 touching circles. Then at least two adjacent rays, say ''C C1'' and ''C C2'', are separated by an angle of less than 60°. The segments ''C Ci'' have the same length - 2''r'' - for all ''i''. Therefore the triangle ''C C1 C2'' is isosceles, and its third side - ''C1 C2'' - has a side length of less than 2''r''. Therefore the circles ''1'' and ''2'' intersect - a contradiction.〔See also Lemma 3.1 in 〕
In three dimensions, the kissing number is 12, but the correct value was much more difficult to establish than in dimensions one and two. It is easy to arrange 12 spheres so that each touches a central sphere, but there is a lot of space left over, and it is not obvious that there is no way to pack in a 13th sphere. (In fact, there is so much extra space that any two of the 12 outer spheres can exchange places through a continuous movement without any of the outer spheres losing contact with the center one.) This was the subject of a famous disagreement between mathematicians Isaac Newton and David Gregory. Newton correctly thought that the limit was 12; Gregory thought that a 13th could fit. Some incomplete proofs that Newton was correct were offered in the nineteenth century, most notably one by Reinhold Hoppe, but the first correct proof (according to Brass, Moser, and Pach) did not appear until 1953.〔.〕
The twelve neighbors of the central sphere correspond to the maximum bulk coordination number of an atom in a crystal lattice in which all atoms have the same size (as in a chemical element). A coordination number of 12 is found in a cubic close-packed or a hexagonal close-packed structure.
In four dimensions, it was known for some time that the answer is either 24 or 25. It is easy to produce a packing of 24 spheres around a central sphere (one can place the spheres at the vertices of a suitably scaled 24-cell centered at the origin). As in the three-dimensional case, there is a lot of space left over—even more, in fact, than for ''n'' = 3—so the situation was even less clear. In 2003, Oleg Musin proved the kissing number for ''n'' = 4 to be 24, using a subtle trick.〔.〕
The kissing number in ''n'' dimensions is unknown for ''n'' > 4, except for ''n'' = 8 (240), and ''n'' = 24 (196,560).〔
Odlyzko, A. M., Sloane, N. J. A. ''New bounds on the number of unit spheres that can touch a unit sphere in n dimensions.'' J. Combin. Theory Ser. A 26 (1979), no. 2, 210—214〕 The results in these dimensions stem from the existence of highly symmetrical lattices: the ''E''8 lattice and the Leech lattice.
If arrangements are restricted to ''regular'' arrangements, in which the centres of the spheres all lie on points in a lattice, then this restricted kissing number is known for ''n'' = 1 to 9 and ''n'' = 24 dimensions. For 5, 6 and 7 dimensions the arrangement with the highest known kissing number is the optimal lattice arrangement, but the existence of a non-lattice arrangement with a higher kissing number has not been excluded.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kissing number problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.